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ABSTRACT

Ibuprofen metabolites can form in humans as a result of metabolic activities or can be pro-
duced by microorganisms in wastewater treatment plants and receiving environments, which 
increases their likelihood of being present in the environment. In this study, various experi-
ments were conducted to determine the removal degree for ibuprofen, ibuprofen carboxylic 
acid (IBU-CBX), and 2-hydroxylated ibuprofen (IBU-2-OH) metabolites with an activated 
sludge reactor. Furthermore, the pseudo-first-order biodegradation rate constant (kbiol) (17.76 
L/gSSday) was calculated to determine the decomposition degree of ibuprofen in the batch 
activated sludge system. The effects of different ibuprofen concentrations (8.2, 5.6, 3.2, 1.51 
mg/L) at constant biomass concentration (3 g/L) on the biodegradation mechanism were 
investigated. In addition, IBU-2-OH and IBU-CBX were tested in a batch activated sludge 
reactor with a volume of 2 L individually at 100 μg/L with activated sludge containing 3 g/L 
biomass. It was observed that ibuprofen had a removal efficiency of more than 90%. IBU-CBX 
and IBU-2-OH were removed at approximately 27–91% and 18–82%, respectively. In abiotic 
conditions, the removal of ibuprofen was found to be 7.07%. It was confirmed that the removal 
of ibuprofen largely depended on biological degradation. This study enabled us to know which 
metabolites are involved in the biodegradation process of ibuprofen in batch experiments with 
the activated sludge process.

Cite this article as: Özgüven A, Öztürk D, Bayram T. An investigation based on removal of 
ibuprofen and its transformation products by a batch activated sludge process: A kinetic study. 
Environ Res Tec 2021;4:4:329–341.

INTRODUCTION

Due to the rapid increase in the human population and 
technological developments, toxic substance concentrations 
discharged to the receiving environment increase day by 
day. Industrial wastewater may contain various organic or 
inorganic contaminants [1]. Pharmaceutical compounds 
and their metabolites are subclasses of organic pollutants 

usually detected in wastewater and surface water. As a result 
of human consumption and veterinary usage, pharmaceu-
tical compounds are found in wastewater treatment plant 
effluents, in aquatic environments such as rivers and surface 
waters, and the potential for these substances to cause ad-
verse effects in the aquatic environment has raised increas-
ing concern [2–6]. The most common way medicines are 
transmitted to aquatic environments is by discharge from 
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the body due to human consumption, reaching the sewage 
system and then wastewater treatment plants and from there 
to drinking water [7]. Many pharmaceutical compounds 
found in wastewater and processed in wastewater treatment 
plants are converted into metabolites or are eliminated at 
low rates or not at all due to their chemical structure [8, 9].

Ibuprofen is one of the most commonly used oral analge-
sics and antipyretics and is widely used to treat rheumatic 
disorders, pain, and fever [10, 11]. Moreover, up to 85% of 
ibuprofen taken into the body is excreted through urine and 
faeces without being metabolized [12]. It has slight solubility 
in aqueous solutions and high mobility in the marine envi-
ronment [13]. It was reported that ibuprofen was detected 
in wastewater treatment plant effluents at concentrations be-
tween 60 ng/L and 100 µg/L in different countries [10, 14]. 
Therefore, there is increasing research interest in the bio-
transformation of ibuprofen during biological wastewater 
treatment processes [15, 16]. Many methods are used for the 
removal of pharmaceutics from aquatic environments, such 
as anaerobic digestion [17], phytoremediation [18], biodeg-
radation by pure cultures [19], moving bed biofilm reactor 
(MBBR) [20], and adsorption [21, 22]. Also, advanced oxi-
dation methods [23] are used, such as electro Fenton [24] 
and photodegradation [25]. Physicochemical methods have 
disadvantages such as high operating costs and the forma-
tion of secondary pollutants [26]. Although biological treat-
ment processes have some disadvantages, such as the adap-
tation of microorganisms to the environment and the need 
for long hydraulic retention times for the biological degrada-
tion of pharmaceuticals, it is considered an environmentally 
friendly option due to its low-cost operating requirements 
and harmless end products generation [27]. 

The main mechanisms in biological removal are biotrans-
formation, degradation, and adsorption [28–30]. It is pos-
sible to examine the mechanism in biological processes 
with kinetic models. Some studies investigated the bio-
transformation removal data with pseudo-first-order and 
pseudo-second-order kinetic models [31, 32]. For bio-
degradation processes of pharmaceutical compounds in 
activated sludge, it was proposed to use pseudo-first-or-
der reaction kinetics and biodegradation reaction rate 
constants (kbiol) [33]. Due to biodegradation and sorption 
processes, ibuprofen has a high removal efficiency (about 
90%) in wastewater treatment plants [34]. Many studies 
investigate ibuprofen biodegradation in wastewater treat-
ment plant inlet and outlet waters and lab-scale batch ex-
periments [35, 36]. 2-hydroxy ibuprofen (IBU-2-OH) and 
carboxyibuprofen (IBU-CBX) are the main ibuprofen me-
tabolites in humans. 1-hydroxy ibuprofen (IBU-1-OH), 
3-hydroxy ibuprofen (IBU-3-OH) and phase II metabo-
lites can be found at low concentrations in urine. Zwiener 
et al. (2002) [35] reported that ibuprofen converts to IBU-
CBX and IBU-2-OH under oxic conditions and only IBU-
CBX under anoxic conditions in their study. Quintana et 

al. (2005) [37] found that IBU-2-OH was produced be-
fore IBU-1-OH in a membrane bioreactor, and both were 
quickly removed from the bioreactor. This study aims to 
investigate the removal of different concentrations of ibu-
profen and its metabolites in a batch activated sludge pro-
cess, which is widely used for organic matter removal. Not 
only ibuprofen but also its metabolites were monitored 
during the biodegradation process by liquid chromatog-
raphy-mass spectrometry/mass spectrometry (LC-MS/
MS) chromatography. Moreover, the data obtained were 
used with the well-known kinetic models to examine the 
removal mechanism of ibuprofen during the activated 
sludge process.

Some studies have mentioned the toxic effects of ibuprofen 
and its metabolites. It has been reported that ibuprofen may 
cause acute toxicity to aquatic organisms at various concen-
trations and may cause a long-term ecological impact on 
non-target organisms if discharged continuously into the 
receiving environment [38]. It has also been reported that 
the excretion product may contain both ibuprofen and its 
metabolites, and its metabolites may be more toxic than its 
parent molecule [39]. To the authors' best knowledge, stud-
ies supporting the biodegradation of high concentrations of 
ibuprofen and its conversion products (TPs) are limited and 
need further investigation.

MATERIALS AND METHODS

Chemicals and Compound Selection
NaOH (CAS Number: 1310-73-2) and HCl (CAS Num-
ber: 7647-01-0) were purchased from Sigma-Aldrich 
and used in pH settings through the trials. Sodium azide 
(NaN3) was purchased from Sigma-Aldrich (CAS Num-
ber: 26628-22-8) and used to inhibit the activated sludge 
activity. Ibuprofen, IBU-2-OH, and IBU-CBX were sup-
plied by Sigma Aldrich, and HPLC grade was provided 
by Merck (Germany). Physicochemical properties of the 
pharmaceutical compounds should also be considered 
to estimate their biodegradation potential. Calibration 

Table 1. Physico-chemical properties of ibuprofen, IBU-2-OH, 
and IBU-CBX [40]

Compound	 Structure	 pKa	 LogKow
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standard solutions were prepared by diluting the stock 
solution of the target compounds appropriately in metha-
nol-water (10:90, v/v). Table 1 shows the physicochemical 
properties and molecular structures of ibuprofen and its 
metabolites [40].

Analytical Methods
Solid-phase extraction (SPE) was applied to samples taken 
from batch-operated reactors using a method developed by 
Gros et al. (2012) [14]. For the solid phase extraction pro-
cess, 60 mg OASIS HLB (Waters, USA), cartridges with 5 
mL of methanol and 5 mL of ultrapure water pH adjusted 
to 4.5 were pre-conditioned. Afterward, 30 mL of wastewa-
ter was loaded into the cartridge at a 10 mL/min loading 
rate. The cartridge was washed with 3 mL of 2% methanol 
solution at a 5 mL/min rate to separate the substances likely 
to adhere to the pharmaceutical compound from the car-
tridge and then dried under vacuum for 15 min. Finally, the 
recovery process was applied with methanol at a rate of 1 
mL/min. Both biodegradation and adsorption of ibuprofen 
in aqueous environments were analyzed by Agilent 1100 
Model HPLC device. In the HPLC analysis, a chromacil 
100-5-C18 column with 250x4.6 mm, 4 µm particle diam-
eter was used, and the flow rate was determined as 1.0 mL/
min. The mobile phase was separated with a binary mobile 
phase at a 0.4 mL/min flow rate using pH=8 (A) and 5 mM 
of methanol (B) and ammonium acetate. The analysis was 
carried out at 220 nm wavelength and 25 °C separation 
temperature. Chromatographic separation for biological 
degradation of IBU-2-OH and IBU-CBX was performed 

with Agilent Technologies 1290 Infinity model UPLC 
equipped with a quaternary pump system (Mildford, USA) 
using a Zorbax Eclipse C18 column (50 mm x 2.91 mm id 
1.8 μm). Agilent Technologies 6460 Triple Quad LC-MS/
MS system was used as the detector. Sample injection vol-
ume was determined as 5 μL. Gradient conditions for IBU-
2-OH and IBU-CBX are given in Table 2. System efficien-
cy was calculated with chemical oxygen demand (COD) 
removal during the acclimatization of activated sludge to 
ibuprofen. The COD value of the wastewater was analyzed 
with a spectrophotometer (WTW spectroflex 6100, at 600 
nm wavelength) according to the closed reflux colorimetric 
method [41].

Synthetic Wastewater and Acclimation Period
Activated sludge was aerated to maintain aerobic condi-
tions by feeding it with synthetic wastewater prepared ac-
cording to ISO11733 standard (Table 3) [42]. The pH was 
adjusted to about 7.0 with 0.2 M HCl or 0.2 M NaOH. The 
wastewater fed into the system for one day after a 12-day 
acclimatization period. In order to acclimatize the acti-
vated sludge biomass, ibuprofen active ingredient was fed 
into activated sludge for 12 days with synthetic wastewa-
ter containing 550 mg/L COD. It is provided COD / N / 
P as 100 / 5 / 1 to allow the growth of microorganisms. 
During the studies, the wastewater was prepared daily to 
prevent changes in the composition of synthetic domes-
tic wastewater. After acclimatization, COD removal was 
determined as 90% that showed activated sludge and bac-
teria adapt to the new environment. Sludge retention time 

Table 2. Gradient conditions for IBU-2-OH and IBU-CBX (a- Solvent Composition b-Timetable)
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(SRT) was operated for 10 days and hydraulic retention 
time (HRT) 24 h in the activated sludge reactor. During 
the acclimation period, ibuprofen at a concentration of 
1mg/L was given to the batch activated sludge process 
with synthetic wastewater, and the MLSS concentration 
was kept at 3 g/L.

Biodegradation Studies
To investigate the biodegradation and removal of ibupro-
fen and its metabolites, a study was carried out in a system 
operated intermittently in the laboratory with activated 
sludge from a domestic wastewater treatment plant. Acti-
vated sludge used in the study was taken from the Edremit 
Municipality domestic wastewater treatment plant operat-
ing in Van province in Turkey. Edremit advanced biological 
wastewater treatment plant is designed to serve an equiv-
alent population of 100,000 people and a maximum flow 
rate of 21.840 m3/day. It is located between 345904 latitudes 
and 4253273 longitudes. The treatment plant is operated as 
HRT 48 hours and SRT 20 days.

Batch experiments were carried out in 3 batch reactors 
(250 mL glass flask) with continuous stirring at room 
temperature (20 °C ± 2 °C), keeping dissolved oxygen 
constant at approximately 6.4 mg O2/L and filled with 100 
mL of activated sludge. These values appear to be signifi-
cantly higher than the dissolved oxygen measured in the 
actual WWTP activated sludge process. Because dissolved 
oxygen is kept at this value to eliminate the decrease in 
non-aerated areas in lab-scale activated sludge processes. 
Other studies keep dissolved oxygen levels close or higher 
than in this study. To prevent anaerobic reactions, the dis-
solved oxygen concentration should be kept above 2 mg/L 
[43, 44]. Ferrando-Climent et al. (2012) [40] kept the dis-
solved oxygen level constant at 7.5 mg/L in their study in 
batch activated sludge reactors.

After the biomass acclimatization process, pharmaceutical 
compounds were added to the synthetic wastewater at dif-
ferent concentrations for a period equal to SRT 10.

Biodegradation rates may vary depending on differences in 
initial charge of the compound or sludge composition and 
experimental conditions [31]. To determine the kbiol coeffi-
cient, samples were taken at 20 min intervals for 1 h, and 
the inlet and outlet concentrations were determined. The 
kbiol values of the activated sludge process generally vary be-
tween 9–35 L/gSSday [45].

Experiments were carried out in two sets. The first ex-
periment set investigated the effect of different ibupro-
fen concentrations (8.2, 5.6, 3.2, 1.51 mg/L) at constant 
biomass concentration (3 g/L). In a second experiment 
set, IBU-2-OH and IBU-CBX were added separately at 
100 μg/L to another activated sludge reactor containing 3 
g/L biomass. The system was operated at room tempera-
ture. 10 mL samples were taken at different time intervals 
(0.83,0.25,0.5,1,2,3,4,5,6 h) from each reactor, and after 
centrifugation (10 min at 5000 rpm), the supernatant liq-
uid was stored in a refrigerator at 4 °C. Before analysis, liq-
uid samples were homogenized using a vortex. Ibuprofen 
concentration was determined using Agilent 1100 Model 
HPLC and 1290 Infinity model UPLC and its metabolites 
were determined using Agilent Technologies 6460 Triple 
Quad LC-MS/MS.

Adsorption and Kinetic Studies
Adsorption trials with inactivated sludge were carried out 
to investigate the removal of ibuprofen under abiotic con-
ditions. The experiments were performed in triplicate. In 
visualized data error bar shows the standard deviation with 
three replicates. Inactivated sludge was used to understand 
the role of the adsorption process, as well as biodegrada-
tion, in the ibuprofen removal mechanism. The activity 
of activated sludge was inhibited using NaN3 (0.1%, w/v) 
[46]. The samples taken at different time intervals (5–1440 
min.) under abiotic conditions were analyzed for ibuprofen 
removal. Batch reactors were wrapped in aluminum foil to 
prevent photodegradation of pharmaceutical compounds 
and placed in a shaker at 200 rpm.

Table 3. Synthetic wastewater composition prepared according to ISO11733 Standard [42]

Content
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Contact time is critical to discuss the adsorption mecha-
nisms [47] and equilibrium time in more detail. This study 
investigates the effect of contact time depending on the re-
lationship between the inactivated sludge and the ibupro-
fen. Kinetic studies were carried out at an initial ibuprofen 
concentration of 8.2 mg/L for 5 to 1444 min, inactivated 
sludge dose (m) of 2 g, and volume of 100 mL, the tem-
perature of 25 °C, 200 rpm stirring speed, and wastewater 
pH (natural) of 7.35. The experimental data obtained were 
applied to well-known kinetic models represented by Eqs. 
(1), (2), (3), and (4) to define the degree of adsorption, such 
as intraparticle diffusion, Elovich, pseudo-first-order, and 
pseudo-second-order [48, 49].

� (1)

kid refers to the intra-particle diffusion rate constant 
(mg/g.min1/2). The slope of the line obtained from the 
graph of qt against t1/2 gives kid, and the intersection gives 
C. C gives the experimenter an idea of the boundary layer 
thickness [50].

β (g/mg) and α (mg/g.min) represent Elovich rate constants 
and can be calculated from the intersection point and slope 
of the line β and α by plotting qt against t1/2.

�
(2)

� (3)

�
(4)

qt and qe are the amount (mg/g) of ibuprofen adsorbed at 
t and equilibrium, respectively. k1 (min-1) is the first-or-
der adsorption rate constant and k2 (g/mg.min) is the sec-
ond-order adsorption rate constant. From the line obtained 
by plotting t against log (qe - qt), k1 and qe values can be 
calculated from slope and intersection, respectively. From 
the slope and intersection of t ‘against t/qt, k2 and qe can be 
calculated, respectively.

RESULTS AND DISCUSSION

Biodegradation studies 

Biodegradation of Ibuprofen in Batch Activated Sludge 
System
Since ibuprofen has a low Henry constant (6.10E−06 atm 
m3/mol), the loss due to evaporation is negligible [51]. The 
most important degradation mechanisms for ibuprofen are 
sorption into sludge and biodegradation. Aerobic batch ex-
periments were performed in an activated sludge reactor 
containing different concentrations of ibuprofen and con-
stant biomass. The time-dependent variation of the differ-
ent ibuprofen concentrations is shown in Figure 1.

As the enzyme concentration will increase at high biomass 
amounts such as 3 g/L, the reaction rate depends on the 
enzyme concentration; the substrate/enzyme ratio will de-
crease as the amount of enzyme increases with the fixed 
substrate value [7]. Suarez et al. (2010) [52] worked in 2 L 
bioreactors and achieved removal efficiency above 80% in 
aerobic conditions and below 20% in anoxic conditions. As 
seen in Figure 1, it was observed that ibuprofen at differ-
ent concentrations was removed at approximately the same 
time (2 h). Similar to these results, Collado et al. (2012) 
[31] found that the degradation efficiency for ibuprofen 
was higher when the same initial biomass concentration 
was used and at low ibuprofen concentrations. Further-
more, Quintana et al. (2005) [37] observed that ibuprofen 
biodegradation was rapid, which is in good agreement with 
our results. This study investigated the effectiveness of ibu-
profen active substance added to synthetic wastewater in 
different concentrations. It was observed that ibuprofen 
was removed at 90–95% in approximately 24 h (Fig. 1). As 
can be seen from the trials conducted at a constant biomass 
concentration of 3 g/L, 90% removal is possible in 12.5 h 
(0.52 day), and ibuprofen removal efficiency was observed 
at up to 95% in 14–24 h (0.6–1 day). In this case, although 
0.7 mg/L ibuprofen was used during the 12-day acclimati-
zation period, microorganisms in the wastewater success-
fully tolerated the applied ibuprofen concentrations. Hi-
josa-Valsero et al. (2010) [53] reported 40% efficiency for 
ibuprofen in the activated sludge system. Furthermore, in 
another study using a sequential batch membrane bioreac-
tor, removal efficiency in the range of 50–90% was reported 
for ibuprofen [54].

Calculation of the Biological Degradation Constant 
(kbiol)
Kinetic modeling should be considered to develop appro-
priate mathematical models to predict the performance of 
treatment systems. One of the most important ways to un-
derstand the removal mechanism better is to evaluate the 

Figure 1. Time-dependent variation of different ibuprofen 
concentrations in the batch activated sludge reactor.
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kinetic data. To understand the mechanism controlling the 
biological process, a pseudo-first-order kinetic model that 
aims to examine the removal process of ibuprofen was used. 
Since pharmaceutical compounds are present in very low 
concentrations, a first-order model is used that the biomass 
concentration and the soluble concentration of the pollut-
ant affect the rate of biodegradation.

The change in biodegradation of ibuprofen obtained in ex-
perimental studies over time is shown in Figure 2.

The concentration of a pharmaceutical compound in waste-
water can be modelled according to the pseudo-first-order 
kinetic model as follows [33, 36].

�
(5)

Where;

Ci: Inlet ibuprofen concentration (µg/L)

Co: Output ibuprofen concentration (µg/L)

HRT: Hydraulic retention time for the entire reactor or du-
ration of the batch reactor (day)

SP: Specific sludge production per volume of treated waste-
water (gSS/m3 wastewater)

SS: Suspended solids concentration

SRT: Sludge age (day)

kbiol: Pseudo-first-order degradation constant

Converting Eq. (5) to linear form gives Eq. (6).

� (6)

The slope of the line obtained by plotting the ln (Ci/C0) val-
ue against time will give -kbiol * SS value.

kbiol is a vital parameter widely used in the literature to com-
pare the removal efficiency of compounds in many micro-

pollutant classes such as ibuprofen [55]. In aerobic batch 
experiments, studies were conducted to establish a rela-
tionship between pharmaceutical compounds' biological 
kinetic degradation coefficient and removal capacity. The 
following information gives this relation [56].

•	 If kbiol <0.1 [L/gSS.day]: No removal (less than 20%)

•	 If 0.1 <kbiol <10: partial removal up to 20–90%

•	 kbiol >10: More than 95% removal due to biodegradation 
and largely reactor configuration.

To calculate kbiol (L/gSSday), the slope of the line in Figure 2 
was divided by the MLSS concentration of activated sludge 
and multiplied by 24 h. MLSS was used as an estimate of the 
biomass concentration found in the activated sludge reac-
tor. The MLSS concentration of the batch activated sludge 
reactor is 3 g/L on average.

In this study, the kbiol value obtained for ibuprofen was ob-
tained as 17.76 L/gSSday. The biodegradation mechanism 
seems to be essential for the removal of ibuprofen, depend-
ing on the kbiol value. In other words, it can be said that 
the removal of ibuprofen is between 90–95% by biological 
degradation. A similar result was reported by Smook et al. 
(2008) [36]. Moreover, Kruglova et al. (2014) [57] found the 
kbiol value for ibuprofen was 10 L/gSS day. Based on this val-
ue, he interpreted that ibuprofen is an easily biodegradable 
chemical substance [57]. The comparison of the kbiol value 
calculated in this study and the literature is given in Table 4. 
According to Table 4, the kbiol value we obtained for ibupro-
fen was found to be similar to some experimental studies, 
and ibuprofen can be considered as a biodegradable phar-
maceutical due to its high kbiol values [57]. The difference 
between these experiments and those reported in the liter-
ature is the pharmaceutical compound concentration. This 
difference in biodegradation constant is likely due to differ-
ences in wastewater and wastewater treatment plant, such 
as sludge age, wastewater inlet characteristics, flow chart 
of the relevant treatment plants, and experimental meth-
ods used. The kbiol values obtained in this study are lower 
than those found in the literature. The lower kbiol values in 
laboratory-scale plants compared to full-scale plants can be 
explained by a lower SRT. In other words, as the biomass 
concentration decreases, the kbiol value decreases [31].

High removal efficiencies were observed with increasing 
SRT in general [59]. However, compounds with high kbiol 
values, such as ibuprofen and paracetamol can be nearly 
removed entirely by biodegradation independently of SRT 
and HRT [60]. SRT is an important parameter for both 
sorption and biological degradation. In this study, SRT was 
selected as 10 days and HRT as 24 hours. Longer SRTs (>15 
days) may increase removal efficiency for some contami-
nants and allow slower growing bacteria (i.e., nitrifying 
bacteria) to form, providing a more diverse microorganism 
community. At the same time, metabolic and co-metabol-

Figure 2. Change in biodegradation of ibuprofen versus 
time during batch experimental studies.
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ic enzymes promoting mineralization of persistent com-
pounds also improves processes [61, 62]. However, the 
removal efficiencies of some pollutants are independent of 
SRT. It was stated that some pollutants were absorbed into 
the sludge in wastewater treatment plants operated with 
SRT of 10 days [63]. Stasinakis et al. (2010) [64] found the 
highest biodegradation rates for endocrine disruptors at 
3-day low SRT. Gaulke et al. (2009) [65] reported that het-
erotrophic bacteria capable of degrading pharmaceutical 
compounds were found at low and high SRTs.

Biodegradation of IBU-2OH and IBU-CBX Metabolites in 
Batch Activated Sludge System
The change in IBU-2OH and IBU-CBX concentrations ac-
cording to time is shown in Figure 3. During the biological 
degradation process, metabolite concentrations gradually 
decreased over time. The removal efficiency of IBU-CBX 
from the environment after 5–400 min was higher than 
the two hydroxylated metabolites. Therefore, IBU-CBX 
and IBU-2OH are considered to be produced differently 
with different methods of biodegradation. To clarify these 
assumptions, IBU-2-OH and IBU-CBX were added sepa-
rately at 100 μg/L to activated sludge containing 3 g/L bio-
mass, which was identified as the second experiment set. 
Total removal for all metabolites was achieved after 6 h (Fig. 
3). Complete removal of pharmaceutical compounds may 
depend not only on the biological degradation process but 
also on the co-effect with the sorption processes. This situ-
ation was supported by a study where high concentrations 
of ibuprofen (43.2–117 ng/g) were found in sludge from 
wastewater treatment plants [34]. In a study [40], concen-
trations of ibuprofen and its metabolites were found in river 
and surface waters changing from 0.7–55.4 ng/L and, an-
other study [66] reported that they could be found in high 
levels (14.6–31.3 μg/L) in activated sludge systems.
The batch activated sludge system results for the removal of 
ibuprofen, and its metabolites showed that the removal effi-

ciencies of ibuprofen, IBU-CBX, and IBU-2-OH were about 
90%, 27–91%, and 18–82%, respectively.

However, it was observed that IBU-2-OH and IBU-CBX 
are the main metabolites in the biodegradation process of 
ibuprofen from the data obtained from the studies carried 
out in the wastewater treatment plant inlet and outlet wa-
ters, and this is consistent with the findings obtained in 
the batch studies conducted in this study. Other studies 
identified two hydroxy-ibuprofen isomers (IBU-2-OH and 
IBU-1-OH) as intermediates in ibuprofen mineralization 
by microorganisms, and they concluded that both interme-
diates degrade or disappear rapidly in the bioreactor [67]. 
Metabolites excreted from the body as a result of metabolic 
activity in humans and the activities of microorganisms in 
wastewater are the main reasons for the occurrence of these 
metabolites in wastewater.

Table 4. Bio-kinetic degradation coefficient (kbiol) values for activated sludge in 
domestic wastewater treatment plants reported in the literature

Pharmaceutical	 kbiol	 SRT	 Reference 
active matter	 (L/gSS.day)	 (day)

Figure 3. Time variation of 2-OH IBU and IBU-CBX con-
centrations in experiments performed in batch activated 
sludge system (100 μg/L metabolite concentration; 3 g/L 
biomass concentration).
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Diagram of possible intermediates formed during the bio-
degradation of ibuprofen by sludge (Fig. 4). Murdoch and 
Hay (2015) [67] showed that ibuprofen could convert to 
carboxylic group by methylation or acetylation of –OH and 
–COOH group in activated sludge. Many studies have re-
ported that carboxy-ibuprofen (CBX-IBU), 2-hydroxy-ibu-
profen (2-OH-IBU) and 1-hydroxy-ibuprofen (1-OH-IBU) 
compounds can be formed throughout the biodegradation 
of IBU by activated sludge [31, 40]. The metabolic mech-
anism consists of hydroxylation, methyl groups oxidation 
to alcohols, esterification of aldehyde, acidic groups and 
carboxylic acid after hydroxylation and decarboxylation 
processes [68].

Adsorption Study
According to the results, approximately 4% of ibuprofen 
adsorption occurred within the first 20 min and about 6% 

within 240 min (Fig. 5). At the end of this period, the ad-
sorption rate gradually decreased, and maximum removal 
efficiency (7.07%) was achieved in 1440 min. It can be said 
that there is a low affinity between the inactivated sludge 
and the ibuprofen.

From the plot of the intra-particle diffusion diagram (data 
not shown), it was observed that the line passing through 
the t1/2 and qt points did not cross the origin. Singh et al. 
(1998) [70] stated that this is a sign that the control mech-
anism is not only pore diffusion. Another explanation was 
made by Lakshmi et al. (2009) [71]. They reported that this 
may be due to the mass transfer rate differences between 
the last and first adsorption periods.

The comparison of the kinetic model coefficients obtained 
in this study and the literature is given in Table 5. As seen 

Figure 4. Diagram of possible intermediates formed during 
the biodegradation of IBU by activated sludge (Figure 
adapted from [35, 37, 67–69]).

Figure 5. The ibuprofen adsorption over time.

Table 5. Comparison of kinetic model coefficients in this study and literature for ibuprofen adsorption

Kinetic model	 This study	 [73]	 [74]	 [77]
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in Table 5, ibuprofen adsorption best fits the pseudo-sec-
ond-order model with 0.999 R2. Based on the fit to the 
pseudo-second-order kinetic model, it can also be said 
that adsorption may be dominated by electron sharing or 
exchange between ibuprofen and dead bacteria [72]. The 
data obtained are in good agreement with the literature 
[73, 74]. Streit et al. (2021) [75] used an adsorbent derived 
from sludge for ibuprofen removal. They reported the pseu-
do-second-order kinetic model was more suitable for the 
removal of ibuprofen and the equilibrium time was 180 
min. They attributed the adsorption balance in 180 min 
to the great affinity between ibuprofen and the adsorbent. 
Correlation coefficients for other kinetic models are exam-
ined in Table 5. It appears that ibuprofen adsorption does 
not fit well the models except for the pseudo-second-order 
model. From these data, it can be concluded that the ad-
sorption mechanism may be predominantly non-physical, 
not controlled by the internal surface adsorption and liquid 
diffusion process. Other studies in the literature [76, 77] 
have shown that ibuprofen adsorption is more suitable for 
the pseudo-second-order kinetic model.

When compared the results of biodegradation and ad-
sorption studies under the same initial ibuprofen concen-
trations (8.2 mg/L), it can be said that removal of ibupro-
fen with biodegradation (95%) more than abiotic sorption 
process (7.07%). Moreover, lower removal of ibuprofen 
was observed in abiotic controls, confirming that the re-
moval is mainly dependent on biological activity. Previous 
studies showed that ibuprofen is generally removed by bi-
ological degradation and adsorption is lower, and volatil-
ization appears negligible, and this is in good agreement 
with our results [55, 78].

CONCLUSIONS

In this study, using a sensitive analytical method based on 
the UPLC-QqLiT system, the removal efficiency of ibu-
profen, IBU-CBX, and IBU-2-OH metabolites were de-
termined in a batch activated sludge process. Ibuprofen 
had a removal efficiency of over 90%, while IBU-CBX and 
IBU-2-OH were removed at efficiencies approximately 
27–91% and 18–82%, respectively. The kbiol value obtained 
for ibuprofen was 17.76 L/gSSday. Also, up to 7.07%, ibu-
profen removal was observed under the abiotic condition, 
showing a low affinity between the inactivated sludge and 
the ibuprofen. The ibuprofen removal best fitted the pseu-
do-second-order kinetic (R2=0.99). Per gram inactivated 
sludge adsorbed 8.217 mg ibuprofen. The ibuprofen can 
be successfully removed from aqueous environments, and 
IBU-CBX and IBU-2-OH metabolites can partially re-
move with an activated sludge process. The findings can 
contribute to further studies about the removal of ibupro-
fen transformation products (TP) and TP formation ki-
netics from aqueous environments.
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